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Abstract-The basic problems of how to define the spatial load distribution vector when the load­
dependent Ritz vectors are applied to the dynamic substructuring using the Component Mode
Synthesis (CMS) methods, are identified and discussed. A new definition for spatial load distribution
vectors is proposed to avoid the loss of some lower substructural modes if the Wilson-Ritz algorithm
is directly used in the modal analysis. The transformation coordinates for the fixed-interface and the
free-interface substructures are introduced using the Wilson-Ritz vectors as a substitute of the
natural modes ofthe substructures. Numerical examples validate the new method and demonstrate
its accuracy.

I. INTRODUCTION

The development of an efficient numerical technique for the dynamic analysis of large
structures with numerous Degrees of Freedom (DOFs) is a valuable task. Component
Mode Synthesis (CMS) techniques have been proposed and used in the modal analysis of
complex structures (Hurty, 1965; Craig and Bampton, 1968; MacNeal, 1971; Rubin, 1975;
Benfield and Hruda, 1971; Wang and Du, 1985). The main computational effort in CMS
is to solve the eigenvalue problems for all identified substructures. Reducing this com­
putational effort would be a significant improvement to the CMS techniques.

In recent years, the Wilson-Ritz vectors algorithm (Wilson et al., 1982; Arnold et al.,
1985) has been found to be much more efficient than the traditional mode superposition
method in analysing forced vibration structures. Encouraged by its efficiency, several
researchers (Wilson and Bay, 1986; Abdallah and Huckelbridge, 1990; Lou and Lian, 1989),
attempted to introduce the Wilson-Ritz vectors algorithm into the CMS techniques for
dynamic substructuring. The static Ritz vectors are load-dependent. The first Ritz vector
may be directly obtained from the spatial load distribution vector of the dynamic loading
acting on the structure. Then, other Ritz vectors are recurrently produced from the previous
ones. Some Ritz vectors, which are orthogonal with respect to the spatial load distribution
vector, will not appear in the set of the obtained Ritz vectors. This is considered to be one
of the advantages of the Wilson-Ritz algorithm when it is used in analyzing specific forced
vibration structural problems. In an extreme special case, for example, the asymmetric Ritz
vectors are not generated at all if a perfectly symmetric structure, which is subjected to a
perfectly symmetric dynamic loading, is analysed. These asymmetric Ritz vectors would
not contribute to the dynamic response of the structure. Therefore, their inclusion is not
required. On the other hand, when the Wilson-Ritz algorithm is applied to the modal
analysis of the substructures, this feature would not be advantageous any more. In fact,
such a feature is problematic. In this case, it is essential to include all the lower modes of
the substructures in CMS techniques. The possibility of losing some of the lower modes of
the substructures, when the Wilson-Ritz algorithm is applied to the modal analysis of
substructures in CMS methods, constitutes a fundamental problem that needs to be solved.
Another problem would arise for free vibration of structures since there is no spatial load
distribution vector present. Therefore, another fundamental problem is how to establish
the spatial load distribution vector for every substructure when the Wilson-Ritz algorithm
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is applied to CMS methods. A correct definition for this spatial load distribution vector
should ensure that the continuous lower modes of every substructure can be composed using
the Ritz vectors obtained recurrently from this spatial load distribution vector.

The objective of this study is to present a new definition for the spatial load distribution
vector and to establish the necessary formulation of the fixed-interface and the free-interface
CMS methods using the Wilson-Ritz algorithm for dynamic substructuring.

2. REDUCED STIFFNESS MATRIX IN THE RITZ VECTORS SUBSPACE

Load-dependent Ritz vectors can be generated recurrently using the Wilson-Ritz
algorithm in terms of the stiffness matrix [K] and mass matrix [M] of the structure as well
as the spatial load distribution vector {f(s)} of the dynamic loading applied to the structure.
The generation process involves the following steps:

(1) Solve for the primary static vectors {Xl}, j = 1, ... , m

where

(1)

(j = I)}.
(j> 1)

(2)

(2) Orthogonalize with respect to [M] and the previous Ritz vectors

j~ 1

{Xr} = {Xl} - L: cjdXd,
k=l

where

(3)

(4)

(3) Normalize with respect to [M] in order to determine the final Ritz vector {XJ, thus

(5)

where

(6)

These m obtained Ritz vectors [X] span a new subspace for the solution of the
eigenproblem of the structure. In general, the reduced stiffness matrix of the structure in
the subspace can be written as

[K*] = [xJT[K1[XJ. (7)

[K*] may be determined in practice by using a recurrence relationship instead of eqn (7) as
follows:

and for j > 1

{Pd = [K]{Xd

=cxl{f(s)} (8a)
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{PJ = [K]{Xj}

= CXj[K{{xt} -:t: cjk{Xd ]
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(8b)

The recurrence formula defining the elements of the jth row in [K*] can be deduced
from eqns (8a) and (8b). The first element kj) in the jth row in [K*] can be expressed by
the following equation:

kj, = {xjV[K]{Xd

= cx){XJT{f(s)}.

Other elements, kfio where k ~ j, can be written as follows:

k-I

= -CXk L Ck1kfi (k ~j),
1=1

(9a)

(9b)

where it is implied that {Xj } T {fd is equal to zero due to the orthogonality of the Ritz
vectors since {fk } is equal to [M]{Xk - d as given by eqn (2).

Thus, due to its symmetry, the whole reduced stiffness matrix of the structure can be
determined such that

ktj = kjk (k > j). (9c)

In eqn (9b), all previous (k-l) elements, kjb in the jth row of [K*] are already
generated. Equation (9b) indicates that the reduced stiffness matrix in the subspace spanned
by Ritz vectors can be recurrently determined in terms of the obtained Ritz vectors {XJ,
the spatial load distribution vector {f(s)}, and the normalizing and orthogonalizing factors
CXj and Cjb respectively. The relationship defined in eqns (9a) and (9b) can be used in place
of the transformation as defined in eqn (7).

3. SPATIAL DISTRIBUTION VECTOR FOR SUBSTRUCTURES

Once the spatial load distribution vector is defined, the Ritz vectors can be generated
for a given substructure based on the previous formulation. Four methods are available
in order to define the spatial distribution vector for a given substructure as follows:

(a) The first method defines the substructure spatial load distribution vector as the
subvector ofthe spatial distribution vector of the actual external load for the total structure.
This was used by Wilson et al. (1986) in the fixed-interface CMS method;

(b) The second method uses the inertial force vector generated by a uniform unit
acceleration applied to the substructure. This was used by Lou and Lian (1989) in the free­
interface CMS method. Thus, for the ith substructure, the spatial distribution vector is
given by:
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{fi(s)} = [Mi]{Ii}, (10)

where [M;] is the mass matrix of the ith substructure and all elements in {IJ are equal to
unity;

(c) The third method is the inertial force vector generated by the static constraint
modes of the fixed-interface substructure. This was used by Abdallah and Huckelbridge
(1990) in the fixed-interface CMS methods. Thus,

{f{(s)} = [M~I]{ tfi~.J (j = 1,2, ... ,Nn, (11 )

where {tfiU is the jth column in the constraint mode matrix ['I'e,;] of the ith substructure,
[M~l] is the partial mass matrix of the substructure considering the internal DOFs only,
and N~ is the number of the boundary DOFs on the fixed-interface of the ith substructure;

(d) The fourth method is the inertial force vector generated by the static attachment
modes of the free-interface substructure, and it was used by Abdallah and Huckelbridge
(1990) in the free-interface CMS method:

{f{(s)} = [Mi]{tfiL} (j= 1,2, ... ,N~), (12)

where {t/J~.J is the jth column in the attachment mode matrix ['I'a.;] of the ith substructure,
[M i ] is the total mass matrix of the substructure, and N~ is the number of boundary DOFs
on the free-interface of the ith substructure.

The lower continuous modes of a substructure may not be obtained when the first and
second definitions of the spatial load distribution vector are employed. As an example, the
case of a symmetric substructure subjected to a symmetric and an asymmetric inertial force
may be encountered. In such a case, losing half of the required Ritz vectors is inevitable.
This problem would be solved when either the third or the fourth definitions of the spatial
distribution vector is employed. However, a different problem will arise for these definitions
as follows:

Consider N) to be the order of [M~I] or [M;). Thus, the total number of Ritz vectors
that can be obtained from eqn (II) or eqn (12) is (N~ x N}) since N) Ritz vectors can be
generated from each constraint mode {./lL} or attachment mode {t/JU. Out of these
(N~ x ND Ritz vectors, only N} are basic independent vectors and the rest are dependent
upon these basic ones. Following the Wilson-Ritz algorithm, the relationship between the
obtained Ritz vectors, when they are less than N}, can be achieved using the concept of
orthogonalization with respect to the mass matrix. However, when N~ is greater than the
number of the required Ritz vectors, m, it would be difficult to determine which {t/J{,} would
be used in generating the Ritz vectors using eqn (11), or {t/J~.i} using eqn (12). In this case,
some {t/JU or {t/JL} will not be used.

Therefore, it is necessary to find a definition for the spatial distribution vector {fi(s)}
in order to apply the Wilson-Ritz algorithm to the modal analysis of substructures in CMS
methods. The form of the vector {f;(s)} is proposed as an inertial force, similar to the
definitions in eqns (10), (11) and (12) and is given by:

{fi(s)} = [M;]{Wi}, (13)

where [Mi ] will be replaced by [M}I] in the case of the fixed-interface CMS method. {wJ is
a general weighting function vector. Two factors are considered in establishing {w;}. First,
{Wi} has to be as close as possible to the first mode shape vector, based on the premise that
the first mode shape of each substructure must be included in the synthesis procedure of
the system. Hence, an improved form for eqn (10) can be adopted for the inertia vector in
this first step as
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Fig. I. Frame structure and its symmetrical function.

(I4)

This improvement is based upon an improved Rayleigh method. Subsequently, it is necess­
ary to take the symmetry of the substructure into account, as mentioned above. A symmetry
function vector, {SJ, is introduced for the case of symmetrical substructures. In general,
the inertial force acting on a symmetrical substructure can be decomposed into symmetrical
and asymmetrical components. A trapezoidal distribution is taken along the nodes on the
same symmetrical planes or lines. As an example, for the case of the symmetrical frame
shown in Fig. 1, the inertial forces are assumed to have a trapezoidal distribution for each
level of the frame. Finally, the weighting function {w;} is composed of {l;} and {Si}, i.e.
thejth element of {Wi} is equal to the product ofthejth elements of both {lJ and {SJ,

Wi,j = f;,j. Si,jo (I 5)

This new spatial distribution vector accounts for the effect of the first mode shape as
well as the effect of the symmetry of the substructure. Each element in {SJ would be equal
to unity in case the substructure is not symmetrical.

4. COORDINATE TRANSFORMATION FOR FIXED-INTERFACE SUBSTRUCTURE

The stiffness and mass matrices of the ith substructure are divided into submatrices
according to the internal and interface DOFs as follows:

(16)

and

(17)

where the superscripts I and B represent the internal and boundary interface DOFs.
The Ritz vectors [X;] of the ith substructure can be recurrently generated from [KY],

[Mil] and {fi(s)} using the Wilson-Ritz algorithm. The constraint modes ['I'c,i] can be
obtained using the relation

(I 8)

Thus, the coordinate transformation for the ith substructure may be written as

SAS 30:22-1
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{Ul} = [X; 'PC.;] {q~}
~ 0 ~ ~

{q;}
= [T;] ur . (19)

The generalized stiffness and mass matrices after finishing the coordinate trans­
formation are given as

and

[M,] = [T;]T[M;][T;]

[
I XTMJ1'Pe.;]

= \T,T Mil BB lIlT Mil'" ,
Te,i i X; M; + T e,; ; T e,;

(20)

(21)

where [Kl] = [X;]T[K;][Xi] can be determined by eqns (9a) and (9b).
Once the generalized stiffness and mass matrices of all substructures are generated, the

generalized stiffness and mass matrices of the whole system can be assembled similar to the
assembling of the stiffness matrix of a structure using the finite element method. Therefore,

n

[K] = L [~;]T[K;][~;]
;~ I

and

n

[M] = L [~;nM;][~i],
i= 1

where n is the number of substructures.

(22)

(23)

5. COORDINATE TRANSFORMATION FOR FREE-INTERFACE SUBSTRUCTURES

In this section, only the case of free-interface substructure that has no rigid-body
modes is considered. The case of the substructure that has rigid-body modes has been
discussed previously in the work by Abdallah and Huckelbridge (1990). Once the Ritz
vectors are obtained, the first step, for establishing the coordinate transformation for the
free-interface substructure, is to determine the residual flexibility matrix, [Fe.;]. It can be
written in the form

[Fe.J = [K;] - 1 - [X;] ([X;]T [K;] [X;]t 1 [X;]T

= [K;] - 1 ([I] - [K;] [X;] [K1] - I [X;]T).

Substituting eqn (8), then

(24)

The computational effort for the inversion of [K1], with a small size, will be much less
than the computational effort for the orthogonalization and normalization of the Ritz



Wilson-Ritz vectors in dynamic substructuring 3165

vectors [X;]. When [M;] is a lumped mass matrix, the orthogonalization of the Ritz vectors
is performed with respect to the stiffness matrix rather than the mass matrix [Mi], as [K1]
can be easily obtained using eqns (9a) and (9b). The residual flexibility matrix can also be
defined as (Lou and Lian, 1989) :

(25)

Regardless of using eqn (24) or eqn (25), [Fe,;] may be written in the form

(26)

Therefore, the residual attachment modes ['Po,;] of the free-interface substructure can be
defined as

(27)

Taking advantage of the triangular decomposition of [K;], defined by eqn (1), in
determining the Ritz vectors [X;], ['Pa,i], defined by eqn (27), can be easily obtained by
solving linear algebraic equations (N~ times) rather than solving for the inversion of [Kil

The first coordinate transformation matrix [Til] is composed of the Ritz vectors [Xi]
and the residual attachment modes ['Po,;]. It expresses the relationship between the physical
coordinates and the model coordinates as well as the interface force as follows:

(28)

The generalized stiffness and mass matrices of the free-interface substructure, after the
first coordinate transformation is determined, are

(29)

and

(30)

Analogous to the conventional method of the free-interface eMS, the second coor­
dinate transformation matrix [Ti2] can be formed, taking advantage of the double com­
patability conditions at the interface. It expresses the relationship between the local coor­
dinates in substructure and the global modal coordinates such that



3166

A

M. Lou et al.

c B

1 234 567

EI • 60320kN. cm2

10 11 12 13 14 15 16

K O= 8.767kN/cm

m m m m m m m m m m m m m m m

Fig. 2. A uniform beam and its substructure division.

(31)

The final reduced stiffness and mass matrices of the whole system can be obtained by
assembling the reduced stiffness and mass matrices of the substructure, thus

and

n

[K] = L [T i2nK.;][Ti2]

i~ 1

n

[M] = L [Ti2]T[M;] [Ti2].

i~ J

(32)

(33)

6. NUMERICAL EXAMPLES

Two examples are analysed in order to demonstrate the new definition suggested for
the spatial distribution vector.

(1) Example 1
A uniform beam, fixed at both ends and supported on a spring at mid-span, was

analysed previously by Abdallah and Huckelbridge (1990). The same beam is considered
here. The beam is discretized into 16 elements as shown in Fig. 2 such that each node has
two degrees of freedom. The mass of each element is lumped at its two ends. The full beam
structure is divided into two substructures at section C. The first substructure includes
elements 1-8, while the second substructure includes elements 9-16. Both techniques of
mode synthesis and Ritz vector synthesis are applied to the free-interface substructure and
the fixed-interface substructure methods in order to determine the first five modes of the
beam.

(i) Results from the fixed-interface substructure method. Fixing section C results in two
symmetrical substructures. Accordingly, symmetrical functions are considered in deter­
mining the weighted function vector, defined in eqns (13) and (15). Three computational
cases are performed for comparison purposes:

(a) Case l-R(3), in which three Ritz vectors for each substructure in addition to two
constraint modes are employed in the analysis, thus, a total of eight generalized degrees of
freedom are assigned to the full beam;

(b) Case 2-M(2), in which two natural modes for each substructure in addition to
two constraint modes, are employed in the analysis, thus, a total of six generalized degrees
of freedom are assigned to the full beam; and,

(c) Case 3-M(3), in which three natural modes for each substructure in addition to
two constraint modes are employed in the analysis, thus, a total ofeight generalized degrees
of freedom are assigned to the full beam.
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Fig. 3. The relative errors in the natural frequencies of the uniform beam (using fixed-substructure
method).

The relative errors in estimating the natural frequencies of the full beam, when com­
pared to the values of the natural frequencies obtained directly using the finite element
method are determined for all the three cases and over a range of the middle spring stiffness.
The relative errors associated with the first two natural frequencies are found to be nearly
equal to zero for all three cases. For the third, fourth and fifth natural frequencies, the
relative error behavior results are shown in Fig. 3. The figure shows that errors for the third
and fourth natural frequencies are small and within the practical acceptable limits. As
expected, the error in the fifth natural frequency is large for the case of considering only
two natural modes for each substructure. There appears to be a tendency for the fourth
mode frequency error to peak around a value K/Ko equal to 3. However, similar behavior
cannot be observed for the third or the fifth mode frequencies.

(ii) Results from the free-interface substructure method. For both free-interface sub­
structures, the two degrees of freedom at section C are assumed free. No symmetry feature
for the resulting cantilever beams exists. Thus, the symmetry function vector, {S;}, is set
equal to a unity vector when eqn (13) is employed in forming the spatial distribution
vector, {f;(s)}. The stiffness of the supporting spring would be introduced when the second
coordinate transformation matrix, [Ti2], is formed. Four computational cases are per­
formed. These are:

(a) Case I-R(4), in which four Ritz vectors for each substructure are employed in
the analysis;

(b) Case 2-R(5), in which five Ritz vectors for each substructure are employed in the
analysis;
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Fig. 4. The relative errors in the natural frequencies of the uniform beam (using free-substructure
method).

(c) Case 3-M(2), in which two natural modes for each substructure are employed in
the analysis; and

(d) Case 4-M(3), in which three natural modes for each substructure are employed
in the analysis.

The total generalized coordinates of the full beam are the sum of the number of Ritz
vectors (or modes) for all the substructures. The relative errors associated with the first
natural frequency are nearly equal to zero for all cases. The relative errors in estimating
the second, third, fourth, and fifth natural frequencies of the beam are shown in Fig. 4. The
figure shows that the errors for the second, third, fourth and fifth mode frequencies are
small and within the practical acceptable limits. There appears to be a tendency for the
error to peak around KIKo equal to 3 in some cases and a value equal to 2 or 4 in others.
In general, the frequency error is low for a very high (or a very low) KIKovalue. As a result,
a local error peak is to be expected in some of the cases.

(iii) Effect of the symmetry of the substructure. To illustrate the significance of the
symmetrical function, {Si}, in determining the weighted function vector, {Wi}, symmetrical
and asymmetrical forms of {Wi} are assumed in determining the three Ritz vectors associated
with each fixed-interface substructure. Then, the six Ritz vectors and the two constraint
modes are employed in synthesizing the natural frequencies of the full beam. The resulting
relative errors in estimating the natural frequencies are listed in Tables I and 2, for both
forms of {Wi}, respectively. Apart from the first two frequencies for the symmetrical form
of {Wi}, the results are clearly poor.

Table I. Percentage relative errors of the natural frequencies of the beam (using symmetrical {f,(s)})

K/Ko

/; 2 3 4 5 6 7 8 9 10

I, 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
12 0.16 0.06 0.Q3 0.02 0.01 0.01 0.01 0.00 0.00 0.00
13 9.54 18.10 29.41 42.36 42.36 42.36 42.36 42.36 42.36 42.36
I. 42.36 42.36 39.73 35.63 43.56 50.64 56.83 62.15 66.66 70.46

Is 69.19 61.13 54.37 48.96 45.12 40.60 40.60 36.99 34.13 33.78
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Table 2. Percentage relative errors of the natural frequencies of the beam (using asymmetrical {fj(s)})

KIKo

j; 2 3 4 5 6 7 8 9 10

I, 32.08 32.08 32.08 32.08 32.08 32.08 32.08 32.08 32.08 32.08
12 41.84 76.67 102.60 121.40 131.70 143.20 150.30 154.90 158.20 160.70
IJ 65.14 40.71 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74
14 38.28 41.64 43.35 41.74 43.47 47.06 51.69 56.86 62.28 67.78
I, 151.60 137.70 125.10 114.60 106.30 99.70 94.60 90.53 90.03 90.03

(2) Example 2
In this example, a beam that differs from the one used in Example 1 in the values

assumed for its stiffness, E/, is employed. Five E/ values are assumed such that
(E/) I = 40,600 kN cm 2 (for elements 1, 4, 7, 8, 10, 12, 15 and 16) ; (E/) 2 = 72,384 kN cm 2

(for elements 2 and 13); (E/h = 75,863 kN cm2 (for elements 3 and 9); (E/)4 = 68,904 kN
cm2 (for elements 5 and 11); and (El)s = 63,220 kN cm2 (for elements 6 and 14). If the
fixed-interface eMS method is applied to this beam, obviously, the stiffness matrices of the
fixed-interface substructures would have no symmetry; however, their mass matrices would
still have symmetry. Four computational cases: R(3), R(4), M(2) and M(3), are considered.
The relative errors for the third, fourth and fifth natural frequencies of the full beam in
these cases are shown in Fig. 5. In both cases of R(3) and R(4), the symmetry function,
{Si}, is accounted for in determining the weighted function vector, {Wi}, for both sub­
structures. For comparison purposes, the case of R(3) is considered again using {w;} in
which the symmetry function, {Si}, is not included, i.e. all elements of {Si} are equal to
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g
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w

M~2!..-.

R (3)

7 8 9 10

0.2 M(3)

ii(~-·..··
0 1 2 3

0.5 ,---~----..;;..--------,

0.4

lO.3
II:g
II: 0.2
w

0.1

40.

l30.
II:
o
ll! 20.
w

10.

4th Mode

R(3),.
""-.--.---.

10

Fig. 5. The relative errors in the natural frequencies of the non-uniform beam (using fixed­
substructure method).
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Table 3. Percentage relative errors of the natural frequencies of the beam (using symmetrical {f,(s)})

KIKa

f, 2 3 4 5 6 7 8 9 10

IJ 2.93 5.27 7.54 7.54 7.84 7.93 7.87 7.99 8.01 8.03
14 8.39 8.78 8.90 8.90 10.48 11.81 12.82 13.59 14.19 15.05
i, 18.08 15.74 13.75 13.75 12.35 11.59 11.43 11.77 12.33 13.41

unity and {w,} is symmetrical. The corresponding results are given in Table 3. Employing
the same number of Ritz vectors (i.e. 3), the results, for this case, are clearly much worse
than the corresponding results shown in Fig. 5.

7. CONCLUSIONS

A new definition for the spatial distribution vector has been proposed for the appli­
cation of Wilson-Ritz vectors in CMS methods. Based on the work presented in this paper,
the following can be concluded:

(1) A recurrence algorithm as given by eqns (8a, b) and (9a, b) for determining the
elastic restoring force, [P], and the reduced stiffness matrix, [K*], of the substructure in the
subspace spanned by the obtained Ritz vectors, is attainable in the coordinate trans­
formation systems of the substructures.

(2) It is essential to introduce the symmetry function into the weighted function vector
for symmetrical (or partially symmetrical) substructures when the Ritz CMS is applied to
modal analysis of the structure. Significant errors can result if this was not performed as
demonstrated by examples.

(3) Excellent results can be achieved using Ritz CMS methods. Moreover, the com­
putational effort can be also reduced. In general, more Ritz vectors than the normal modes
of a substructure are required in order to achieve the same accuracy. In the examples
discussed in this paper, it was observed that one (or two) more Ritz vectors are required
for each substructure. In the meantime, a saving of computational effort is achieved.
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